The Crystal Structure of Creatine Monohydrate*

By L. H. Jensen
Department of Anatomy, University of Washington, Seattle 5, Washington, U.S.A.

(Received 27 October 1954)
The crystal structure of creatine monohydrate has been determined from two-dimensional projections. Hydrogen contributions and deviations from average thermal motion have been allowed for in F_{c}. The resulting standard deviations in atomic coordinates are comparable with those from the three-dimensional determination by Mendel \& Hodgkin.

Introduction

There are in progress in these laboratories fundamental studies on the ultrastructure of biological systems. Creatine and phosphocreatine are of basic importance in understanding the function and structure of one such system, namely, muscle. This paper is to report the determination of the crystal structure of creatine monohydrate by two-dimensional projections. Near the end of this work it was learned through the courtesy of Dr C. Brink that Drs D. Hodgkin and H . Mendel had already determined the structure using three-dimensional data treated by least squares. Their work has appeared (Mendel \& Hodgkin, 1954), but it seems worth-while to report the two-dimensional work and to compare the results.

Unit cell and space group

The parameters of the unit cell were determined from oscillation and Weissenberg photographs using $\mathrm{Cu} K \alpha$ radiation and were found to be

$$
a_{0}=12 \cdot 52, b_{0}=5 \cdot 03, c_{0}=12 \cdot 18 \AA ; \beta=108 \cdot 8^{\circ} .
$$

The space group is $P 2_{1} / c$ with four molecules in the unit cell.

Intensity data

Integrated intensity data for the three principal zones were collected using a Wiebenga-type integrating Weissenberg goniometer set to integrate along the film coordinate at right angles to the rotation axis. Integration along the film coordinate parallel to the rotation axis was done with a Moll-type recording microdensitometer (Bennett, Quinton \& Mueller, 1953). With proper precautions, this method is capable of fair accuracy. Duplicate data for approximately 100 of the most intense $h 0 l$ reflections taken from different crystals, one medium sized crystal with both absorption and extinction present and one small crystal with negligible absorption, and extinction reduced, gave results with a standard deviation of 0.64 .

[^0]Data were collected from a number of crystals none of which had a cross-sectional dimension greater than 0.3 mm . The most intense reflections, in particular 200, 011 and 013, were low, presumably owing to secondary extinction. An attempt was made on a small crystal, cross-section $0.1 \times 0.1 \mathrm{~mm}$., to eliminate extinction effects by repeated dipping in liquid nitrogen. However, 200 was still low by about 10%. Hence a powder sample was prepared and the observed values of the above three planes were determined densitometrically from the powder photograph and brought on to the same scale as the single-crystal data by comparison with 100 . Of the 323 possible reflections, 269 were observed.

The preliminary scale and temperature factors were determined in the usual way (Wilson, 1942).

Determination of the structure

The method of attack on this structure was similar to Mendel \& Hodgkin's but sufficiently different to warrant a brief description. In view of the short b axis and the occurrence of a number of relatively large $U_{\text {hot }}$ it seemed likely that the projection on (010) would be solvable by a direct approach. The signs of two $F_{\text {hol }}$ may be chosen arbitrarily. By applying inequalities and the equation $S_{h} S_{h^{\prime}}=\mathrm{S}_{h+h^{\prime}}$ (Harker \& Kasper, 1948; Zachariasen, 1952) the signs of most $U_{h 0 l}>0.3$ are determined in terms of them and three others, a, b and c. An attempt was made to eliminate these unknowns by extension to planes with smaller U, but only a trivial solution resulted.
Sayre's squaring method was applied in an effort to determine a, b and c (Sayre, 1952; Cochran \& Penfold, 1952). The equations for about 50 of the most intense reflections were written out and, although the correct sign combination was not determined with certainty, two of the eight combinations appeared as possibilities. F_{o} syntheses gave, for both, peaks in positions such that a reasonable model of the molecule would fit, but peak heights were erratic and there was no certainty that either was correct.

Recourse was then taken to a detailed interpretation of the Patterson projection on (010) involving peaks
within $2.5 \AA$ from the origin. This led rapidly to a model in which the orientation of the molecule was that indicated by the most likely sign combinations from the direct method. The F 's calculated from one of these gave satisfactory $F_{h 00}, F_{h 06}, F_{h, 0,12}$ with poor agreement for other $F_{h 0}$'s. The other possibility, differing essentially only in the displacement of the molecule by $c_{0} / 12$, resulted in F 's with a satisfactory reliability index for the most intense reflections. Refinement proceeded through two F_{o} syntheses and five $\boldsymbol{F}_{o}-\boldsymbol{F}_{\boldsymbol{c}}$ syntheses.
The first $F_{o}-F_{c}$ synthesis indicated clearly the approximate position of ten of the eleven hydrogen atoms and showed that the thermal motion differed considerably for the various atoms and was quite anisotropic for some. The remaining hydrogen atom,

Fig. 1. Structural formula for creatine monohydrate and numbering of atoms.
H_{9}, Fig. 1, was not located with certainty until after the third $F_{o}-F_{c}$ synthesis. Allowance for anisotropic thermal motion was made after this difference synthesis (Cochran, 1951) and final temperature-factor parametèrs were extrapolated (or interpolated) from the values used in the fourth and fifth difference syntheses. Fig. 2(a) shows the final $F_{o}-F_{c}$ synthesis on (010) with all atoms and the scattering factor parameters of Table 1 included in F_{c}. Fig. 2(b) shows the positions of the hydrogens and Fig. 2(c) the difference of thermal motion from that corresponding to a temperature factor of $\exp \left[-2.0 \sin ^{2} \theta / \lambda^{2}\right]$.

Table 1. Final temperature factors, $\exp \left[-\left(B+C \cos ^{2} \varphi\right) \sin ^{2} \theta / \lambda^{2}\right]$, for $\boldsymbol{F}_{h 0 l}$

Atom	$B\left(\AA^{2}\right)$	$C\left(\AA^{2}\right)$
C_{1}	2.0	-
C_{2}	3.5	-
C_{3}	2.0	1.2
C_{4}	1.6	0.8
$\mathrm{~N}_{1}$	2.0	0.5
$\mathrm{~N}_{2}$	2.0	1.0
$\mathrm{~N}_{3}$	2.0	-
O_{1}	2.4	1.2
O_{2}	1.4	2.0
O_{3}	3.0	1.0

$\varphi=$ angle between normal to plane and direction of maximum vibration taken as $+41^{\circ}$ from c axis.

(a)

(b)

(c)

$$
\begin{array}{ll}
\bullet & \mathrm{C} \\
\bullet & \mathrm{~N} \\
\circ & \mathrm{O} \\
\circ & \mathrm{H}
\end{array}
$$

Fig. 2. (a) Fifth $F_{o}-F_{c}$ synthesis on (010). Final δx_{i} and δz_{i} taken from this map.
(b) $F_{o}-F_{c}$ synthesis on (010) showing hydrogens.
(c) $F_{o}-F_{c}$ synthesis on (010) showing difference of thermal motion from that corresponding to

$$
\exp \left[-2 \cdot 0 \sin ^{2} \theta / \lambda^{2}\right]
$$

Contours at intervals of 0.25 e. \AA^{-2}, zero contour omitted, negative contours broken.

The Patterson projection along [100] was most readily interpreted as indicating the molecule to be
V-shaped in this projection. The very intense 013 showed the approximate position of the molecule, and the oxygen of the water was placed at $y=\frac{1}{2}$. Refinement by difference syntheses was slow because of the rather poor y coordinates assumed and the appreciable overlap of six of the ten atoms. Seven difference syntheses, resulting in a reliability index of $17 \cdot 4 \%$, were run before data for ($h k 0$) were available. In projection along [001] all atoms except two are quite well resolved and these are resolved in projection along [100]. Refinement now proceeded by alternate use of data from ($h k 0$) and ($0 k l$). No attempt was made to include anisotropic scattering factors in $F_{h k 0}$ or $F_{0 k l}$, but partial allowance for differences of thermal motion was made by including the individual isotropic temperature-factor parameters listed in Table 2.

Table 2. Final temperature factors, $\exp \left[-B \sin ^{2} \theta / \lambda^{2}\right]$, for $F_{h k 0}$ and $F_{0 k l}$

Atom	$B_{h k 0}\left(\AA^{2}\right)$	$B_{0 k l}\left(\AA^{2}\right)$
C_{1}	2.5	2.5
C_{2}	$\mathbf{3 . 7}$	3.5
C_{3}	$\mathbf{3 . 0}$	2.5
C_{4}	2.5	3.0
$\mathrm{~N}_{1}$	2.5	2.5
$\mathrm{~N}_{2}$	2.5	3.0
$\mathrm{~N}_{3}$	$\mathbf{3 . 0}$	2.5
O_{1}	$\mathbf{3 . 4}$	3.5
O_{2}	$\mathbf{3 . 7}$	$\mathbf{3 . 0}$
O_{3}	$\mathbf{3 . 7}$	5.0

The y coordinates for the hydrogen atoms were chosen on the basis of their (x, z) coordinates and an assumed bond length of $1.0 \AA$. Final difference syntheses along [100] and [001] appear in Fig. 3.

The x and z coordinates were taken from the fifth

(a)
difference synthesis on (010) and the y coordinates were averaged from the seventh difference synthesis along [001] and the eleventh along [100]. Final coordinates appear in Table 3 and the bond lengths calculated from them in Table 4. The four figures to

Table 3. Atomic coordinates

	x	y	z
	0	y	
C_{1}	0.2111	0.522	0.3597
C_{2}	0.3300	0.870	0.4731
C_{3}	0.1495	0.741	0.5039
C_{4}	0.1713	0.540	0.6014
$\mathrm{~N}_{1}$	0.2884	0.472	0.372
$\mathrm{~N}_{2}$	0.1196	0.366	0.3275
$\mathrm{~N}_{3}$	0.2260	0.715	0.4348
O_{1}	0.2565	0.396	0.6265
O_{2}	0.0979	0.523	0.659
O_{3}	0.4854	0.360	0.6896
H_{1}	0.170	0.914	0.546
H_{2}	0.073	0.734	0.457
H_{3}	0.320	0.012	0.548
H_{4}	0.396	0.754	0.516
H_{5}	0.344	0.917	0.415
H_{6}	0.352	0.527	0.317
H_{7}	0.048	0.381	0.348
H_{8}	0.116	0.214	0.272
H_{9}	0.280	0.341	0.250
H_{10}	0.500	0.206	0.750
H_{11}	0.408	0.367	0.675

which the x and z coordinates and bond lengths are recorded is not meant to imply an accuracy greater than Mendel \& Hodgkin's, but rather to indicate how the results round off for comparative purposes.

The reliability index neglecting unobserved reflections is $6 \cdot 5,7 \cdot 3$ and $7 \cdot 5 \%$ respectively for $(0 k l)$, $(h 0 l)$ and ($h k 0$) planes. (For the sake of brevity, Table 5

Fig. 3. (a) Eleventh $F_{o}-F_{c}$ synthesis along [100] and (b) seventh along [001]. Final δy_{i} averaged from these maps. Contours at intervals of $0.50 \mathrm{e}^{-\AA^{-2}}$, zero contours omitted, negative coutours broken.

Table 4. Bond lengths and angles

$\mathrm{C}_{1}-\mathrm{N}_{1}$	$1.344 \AA$	$\mathrm{C}_{4}-\mathrm{O}_{2}$	1.254 A
$\mathrm{C}_{1}-\mathrm{N}_{2}$	1.339	$\mathrm{O}_{1}-\mathrm{O}_{3}$	2.723
$\mathrm{C}_{1}-\mathrm{N}_{3}$	1-304	$\mathrm{O}_{3}-\mathrm{O}_{3}^{\prime \prime}$	2.877
$\mathrm{C}_{2}-\mathrm{N}_{3}$	1.459	$\mathrm{N}_{1} \mathrm{O}_{1}^{\prime}$	2.804
$\mathrm{C}_{3}-\mathrm{N}_{3}$	1.471	$\mathrm{N}_{1}-\mathrm{O}_{3}^{\prime \prime \prime}$	2.944
$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.515	$\mathrm{N}_{2}-\mathrm{O}_{2}^{\prime}$	$2 \cdot 856$
$\mathrm{C}_{4}-\mathrm{O}_{1}$	1-243	$\mathrm{N}_{2}-\mathrm{O}_{2}^{\prime \prime \prime}$	$2 \cdot 873$
$\mathrm{N}_{1} \mathrm{C}_{1} \mathrm{~N}_{2}$	115.5°	$\mathrm{C}_{1} \mathrm{~N}_{3} \mathrm{C}_{3}$	119.7°
$\mathrm{N}_{1} \mathrm{C}_{1} \mathrm{~N}_{3}$	120.7	$\mathrm{C}_{2} \mathrm{~N}_{3} \mathrm{C}_{3}$	116.6
$\mathrm{N}_{2} \mathrm{C}_{1} \mathrm{~N}_{3}$	123.9	$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{O}_{1}$	$120 \cdot 3$
$\mathrm{N}_{3} \mathrm{C}_{3} \mathrm{C}_{4}$	113.7	$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{O}_{2}$	116.4
$\mathrm{C}_{1} \mathrm{~N}_{3} \mathrm{C}_{2}$	122.2	$\mathrm{O}_{1} \mathrm{C}_{4} \mathrm{O}_{2}$	123.1

listing values of F_{n} and F_{c} has been omitted. A copy may be obtained by application to the author.)

Discussion and comparison

Limitations of two-dimensional syntheses become apparent in projection along [100] and [001]. For such projections, δx_{i} cannot be taken as proportional to the slope of the difference map at the assumed atomic position but may be approximated from details at a distance. It is particularly important in such instances to include hydrogen and individual isotropic or anisotropic temperature factors in F_{c}.

Approximately the errors in atomic coordinates due to neglect of hydrogen may be computed by assuming $\varrho(r)=k_{1} \exp \left[-k_{2} r^{2}\right]$, where r is the distance from $\varrho_{\text {max. }}$. If in two-dimensional projections the maxima are taken as 1 and 8 e. \AA^{-2} for hydrogen and carbon respectively, one calculates a maximum displacement of a carbon atom of $0.023 \AA$ by a hydrogen $0.4 \AA$ distant. Comparison of Figs. 2(b) and 2(c) indicates that neglect of deviations from the mean thermal motion may result in displacement of twice this amount in creatine monohydrate.

The carboxyl group may be regarded as constituted of two equally contributing resonance forms with a formal charge of $-\frac{1}{2}$ on each oxygen; the guanidine group as constituted of three approximately equally contributing resonance forms with a formal charge of $+\frac{1}{3}$ on each nitrogen. Hence it would seem reasonable to use as scattering factor for oxygen, $(17 / 16) f_{0}$, and for nitrogen, $(20 / 21) f_{\mathrm{N}}$. This was tried for $F_{h o l}$ after the fourth difference synthesis, but the reliability index rose from 9.7 to 10.0%. The increase can hardly be considered significant. However, two low-index F 's, namely F_{201} and $F_{20 \overline{1}}$, with F_{o} 's of 27.2 and $6 \cdot 1$, were calculated 27.7 and 6.9 using conventional (McWeeny, 1951) scattering factors but 21.6 and 11.9 with modified f 's. These F_{o} 's were measured several times on different crystals and the ΔF 's are considerably larger than expected observational errors. This would seem to indicate that the electron density at considerable distance from the atomic centers is not well represented
by the modified f 's, and that some other electronic distribution, e.g: that corresponding to conventional f 's with H_{6} and H_{9} moved away from N_{1} and N_{2} and toward O_{1} and O_{2}, would more closely approximate that actually present.

Both bond lengths and bond angles agree well with the three-dimensional results, the standard deviations, assuming equal accuracy for the two determinations, being $0.011 \AA$ in bond length and 1.1° in bond angle within the creatine molecule and $0.010 \AA$ for the hydrogen bonds. Application of Cruickshank's equations (1949) to $\boldsymbol{F}_{o}-\boldsymbol{F}_{c}$ gives

$$
\sigma\left(A_{h}\right)=0.534, \sigma\left(A_{k}\right)=0.861, \sigma\left(A_{l}\right)=0.570
$$

which, with $\partial^{2} \varrho / \partial x^{2}=67 \cdot 2$ e. \AA^{-4} for a carbon atom, gives

$$
\sigma(x)=0.0083 \AA, \sigma(y)=0.0128 \AA, \sigma(z)=0.0090 \AA
$$

with a r.m.s. value of $0.0102 \AA$ and a standard deviation for a $\mathrm{C}-\mathrm{C}$ bond of $0.014 \AA$.

The two determinations agree in indicating the equality of the two $\mathrm{C}-\mathrm{O}$ bonds. $\mathrm{C}_{1}-\mathrm{N}_{3}$ is, however, surprisingly short. The difference between its value, $1.304 \AA$, and the average of $\mathrm{C}_{1}-\mathrm{N}_{1}$ and $\mathrm{C}_{1}-\mathrm{N}_{2}, 1.342 \AA$, would fall in the 'probably significant' range, using the more conservative estimate for the standard deviation of a bond length. One would rather expect $\mathrm{C}_{1}-\mathrm{N}_{3}$ to be longer since N_{1} and N_{2} are planar, bonding orbitals $s p^{2}$ hybrids, while the bonding orbitals of pyramidal N_{3} would have more p character. $\mathrm{C}_{2}-\mathrm{N}_{3}$ and $\mathrm{C}_{3}-\mathrm{N}_{3}$ are equal within experimental error and only slightly less than the usually accepted $\mathrm{C}-\mathrm{N}$ single-bond length.

For further details of the structure and a full discussion the reader is referred to Mendel and Hodgkin's paper (1954).

The author wishes to express his thanks to Mrs Grace Tucker and Mr John Bolman, who did most of the calculating, and to the Research Committee of the Graduate School and the Muscular Dystrophy Association for financial support which made this work possible.

References

Bennett, H. S., Quinton, W. E. \& Mueller, V. C. (1953). Appl. Spectrosc. 7, 127.

Cochran, W. (1951). Acta Cryst. 4, 408.
Cochran, W. \& Penfold, R. (1952). Acta Cryst. 5, 644. Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65.
Harker, D. \& Kasper, J. S. (1948). Acta Cryst. 1, 70. McWeeny, R. (1951). Acta Cryst. 4, 513.
Mendel, H. \& Hodgein, D. C. (1954). Acta Cryst. 7, 443.

Sayre, D. (1952). Acta Cryst. 5, 60.
Wilson, A. J. C. (1942). Nature, Lond. 150, 152.
Zachariasen, W. H. (1952). Acta Cryst. 5, 68.

[^0]: * Presented at the Spring Meeting of the American Crystallographic Association, Cambridge, Mass., April 1954.

